# Quantitative Problems in Anesthesia 

David R. Moss, MD<br>Tufts Medical Center<br>Boston, MA

## 1 Don't cry over spilt sevoflurane

While setting up the OR you accidentally drop a 250 mL bottle of sevoflurane. It shatters when it hits the ground.

1. Assuming the OR is a sealed container of dimensions $25 \cdot 20 \cdot 10 \mathrm{ft}$, what is the steady-state concentration, $c_{s s}$ of sevoflurane in the room (in ppm)?

Room temperature is $25^{\circ} \mathrm{C}$, the density of sevoflurane is $1.52 \mathrm{~g} / \mathrm{mL}$ and its molecular weight is 200 .

At steady-state the sevoflurane liquid has completely vaporized. How much sevoflurane gas is produced? At STP $\left(0^{\circ} \mathrm{C}\right.$ and 1 atm$)$, 1 mole of gas occupies 22.4 L . At $25^{\circ} \mathrm{C}$, this constant increases (Charles's Law, temperature in Kelvin):

$$
22.4\left(\frac{298 \mathrm{~K}}{273 \mathrm{~K}}\right)=24.5 \mathrm{~L} / \mathrm{mol}
$$

How many moles are in 250 mL of liquid? Molecular weight is the number of grams per mole. And since density is grams per $m L$, we find

$$
(250 \mathrm{~mL})\left(\frac{1.52 \mathrm{~g}}{\mathrm{~mL}}\right)\left(\frac{\mathrm{mol}}{200 \mathrm{~g}}\right)=1.9 \mathrm{~mol}
$$

i.e.

$$
(1.9 \mathrm{~mol})\left(\frac{24.5 \mathrm{~L}}{\mathrm{~mol}}\right)=46.6 \mathrm{~L} \text { sevo gas }
$$

The volume of the OR is $l w h$,

$$
(25)(20)(10)=\left(5000 \mathrm{ft}^{3}\right)\left(\frac{28.3 \mathrm{~L}}{\mathrm{ft}^{3}}\right)=141,500 \mathrm{~L}
$$

Hence the steady state concentration is

$$
\frac{46.6}{141,500}=329 \times 10^{-6}=0.03 \%=329 \mathrm{ppm}
$$

2. If the ventilation system is on and operating at the industry-standard flow rate of 15 room volume exchanges per hour, how long will it take before the concentration in the room falls below 2 ppm , the OSHA ceiling on occupational exposure to volatile anesthetics?

Let's find a general expression for $c(t)$, the concentration of sevo at time $t$.
With 15 room volume exchanges per hour, it takes 4 minutes to exchange $V$. We define this to be the time constant, $\tau$. Therefore if $c$ is the concentration of sevo at any particular time, $\frac{c V}{\tau}$, is the volume of sevo cleared per minute. This must be equal to the rate of change, $V \frac{d c}{d t}$. Thus,

$$
\begin{aligned}
V \frac{d c}{d t} & =-\frac{c V}{\tau} \\
\frac{d c}{c} & =-\frac{1}{\tau} d t
\end{aligned}
$$

Integrating both sides,

$$
\begin{aligned}
& \int \frac{d c}{c}=\int-\frac{1}{\tau} d t \\
& \ln (c)=-\frac{t}{\tau}+K
\end{aligned}
$$

i.e,

$$
c(t)=K e^{-\frac{t}{\tau}}
$$

But at time $t=0$ we know that $c(t)=c_{s s}$, so $K=c_{s s}$ and

$$
\begin{equation*}
c(t)=c_{s s} e^{-\frac{t}{\tau}} \tag{Figure1}
\end{equation*}
$$

Solving for t ,

$$
\begin{aligned}
& 2=329 e^{-\frac{t}{4}} \\
& t=20.4 \mathrm{~min}
\end{aligned}
$$

3. What is the initial rate of change in concentration (in $\mathrm{ppm} / \mathrm{min}$ )?

Differentiating, we have

$$
c^{\prime}(t)=-\frac{c_{s s}}{\tau} e^{-\frac{t}{\tau}}
$$

Thus,

$$
c^{\prime}(0)=-\frac{329}{4}=-82.3 \mathrm{ppm} / \mathrm{min}
$$



Figure 1: Sevo concentration vs time

## 2 Fun with E-cylinders

If a full $O_{2}$ E cylinder ( 1900 psi ) contains 660 L of $O_{2}$ at STP , what is the radius of the cylinder in terms of its height, $r(h)$ ?

The volume, $V$, of a cylinder of height $h$ and radius $r$ is given by:

$$
V=\pi r^{2} h
$$

Hence,

$$
r=\sqrt{\frac{V}{\pi h}}
$$

To get at $V$, recall

$$
P_{1} V_{1}=P_{2} V_{2} \quad(\text { Boyle's Law })
$$

Given that a full E-cylinder holds 660 L of $O_{2}$ at STP and $P_{a t m}=14.7 \mathrm{psi}$,

$$
V=\left(\frac{14.7}{1900}\right) 660 \mathrm{~L}=5.1 \mathrm{~L}
$$

Therefore,

$$
r(h)=\sqrt{\frac{(5.1)\left(61 \frac{i n^{3}}{L}\right)}{\pi h}}=\frac{9.95}{\sqrt{h}}
$$

## 3 IV infusion kinetics

An intravenous infusion of a drug with concentration $c_{d} \mathrm{mg} / \mathrm{ml}$ is started with a syringe pump. The infusion line is piggybacked to a continuously dripping carrier fluid with a three-way stopcock. The distance between the stopcock and the tip of the IV catheter is the dead volume, $V$. The carrier flows at a rate $Q_{c} \mathrm{ml} / \mathrm{min}$ and the drug is infused at a rate $Q_{d} \cdot{ }^{1}$

1. What is the steady-state drug concentration $c_{s s}$ at the tip of the catheter?

The amount of drug, in $\mathrm{mg} / \mathrm{min}$, that is infused into $V$ is $c_{d} Q_{d}$. Therefore in one minute, $c_{d} Q_{d} \mathrm{mg}$ of drug have been diluted by a total of $Q_{d}+Q_{c} \mathrm{ml}$ of fluid. Thus,

$$
c_{s s}=\frac{c_{d} Q_{d}}{Q_{d}+Q_{c}}
$$

2. If the drug traverses $V$ with a discrete 'head' (Plug-Flow), how long does it take for the drug to reach the patient's bloodstream?
[^0]Since there is no mixing proximal to the head, the head itself is moving at a rate of $Q_{d}+Q_{c}$. Therefore the time to traverse $V$ is one time constant, $\tau$, in min:

$$
\tau=\frac{V}{Q_{d}+Q_{c}}
$$

3. If the drug mixes uniformly within $V$ at all times (Well-Mixed), how long does it take for the drug concentration to reach $95 \%$ of steady-state?

This is similar to problem 1. Here the concentration of drug in $V$, like the concentration of sevo in the OR is variable. As before, the amount of drug cleared is $\frac{c V}{\tau}$. The difference here is that drug is continuously delivered to $V$ at a rate $c_{d} Q_{d}$. This difference must be equal to the rate of change, $V \frac{d c}{d t}$. Thus,

$$
\begin{array}{r}
V \frac{d c}{d t}=c_{d} Q_{d}-\frac{c V}{\tau} \\
\frac{d c}{d t}+\frac{c}{\tau}=\frac{c_{d} Q_{d}}{V}
\end{array}
$$

Multiplying through by the integrating factor $e^{\frac{t}{\tau}}$,

$$
e^{\frac{t}{\tau}} \frac{d c}{d t}+e^{\frac{t}{\tau}} \frac{c}{\tau}=\frac{c_{d} Q_{d}}{V} e^{\frac{t}{\tau}}
$$

By the product rule,

$$
\frac{d}{d t}\left(c e^{\frac{t}{\tau}}\right)=\frac{c_{d} Q_{d}}{V} e^{\frac{t}{\tau}}
$$

Integrating both sides,

$$
\begin{gathered}
c e^{\frac{t}{\tau}}=\frac{c_{d} Q_{d}}{V} \int e^{\frac{t}{\tau}} d t \\
c e^{\frac{t}{\tau}}=\frac{c_{d} Q_{d}}{V} \tau e^{\frac{t}{\tau}}+K \\
c e^{\frac{t}{\tau}}=c_{s s} e^{\frac{t}{\tau}}+K
\end{gathered}
$$

Therefore,

$$
c(t)=c_{s s}+K e^{-\frac{t}{\tau}}
$$

But at time $t=0$ we know that $c(t)=0$, so $K=-c_{s s}$ and

$$
\begin{equation*}
c(t)=c_{s s}\left(1-e^{-\frac{t}{\tau}}\right) \tag{Figure2}
\end{equation*}
$$

In one time constant, $c(t)$ has increased to $1-\frac{1}{e}$, or $63 \%$ of $c_{s s}$ In two time constants, $c(t)$ has increased to $1-\frac{1}{e^{2}}$, or $86 \%$ of $c_{s s}$ In three time constants, $c(t)$ has increased to $1-\frac{1}{e^{3}}$, or $95 \%$ of $c_{s s}$ Therefore, it takes $3 \tau$ to reach $95 \%$ of steady-state concentration.


Figure 2: Infusion delivery vs time

## 4 I smell sevo!

An anesthesia delivery system at steady-state is delivering $8 \%$ sevoflurane with a total fresh gas flow $Q$. Prior to intubation, the mask is taken off the patient and exposed to the environment. Let $V$ be the dead volume of the breathing system (includes the breathing circuit, breathing bag, and internal plumbing distal to the vaporizer).

1. How much wasted sevoflurane gas, $W$, is delivered into the OR environment in $t$ minutes?

$$
W=(.08) Q t
$$

(Figure 3, RED)
2. As you take off the mask you turn the sevoflurane vaporizer off. Now how much sevoflurane gas, $W$, is delivered into the OR environment in $t$ minutes?

Here the concentration is variable, and just as in problem 1, is given by

$$
c(t)=(.08) e^{-\frac{t}{\tau}}
$$

where

$$
\tau=\frac{V}{Q}
$$

Therefore, the delivery $d(t)$ of sevo is

$$
d(t)=(.08) Q e^{-\frac{t}{\tau}}
$$

And so

$$
\begin{array}{r}
W=\int_{0}^{t}(.08) Q e^{-\frac{t}{\tau}} d t \\
W=(.08) Q \tau\left(1-e^{-\frac{t}{\tau}}\right) \\
W=(.08) V\left(1-e^{-\frac{t}{\tau}}\right)
\end{array}
$$

(Figure 3, BLACK)
3. Now, instead of turning off the vaporizer, you turn off the fresh gas flow. How much sevoflurane gas, $W$, is delivered into the OR environment in $t$ minutes?

Here $Q=0$ so it follows that $W=0$ independent of $t$. (Figure 3, GREEN)


Figure 3: Wasted sevo vs time, assuming $\mathrm{V}=10 \mathrm{~L}$ and $\mathrm{Q}=10 \mathrm{lpm}$. RED - Vaporizer and flows on. BLACK - Vaporizer off and flows on. GREEN - Vaporizer on or off and flows off.

## 5 Anesthesia at high altitude

You take an anesthesia machine up to $10,000 \mathrm{ft}\left(P_{\text {atm }}=500 \mathrm{mmHg}\right)$ and set the vaporizer (calibrated at sea level) to deliver $2.1 \%$ sevoflurane (vapor pressure 160 mm ). What concentration of sevoflurane gets delivered? What is the relative potency?

How does the sevo vaporizer deliver a $2.1 \%$ concentration? At sea level, the saturated vapor concentration of sevoflurane equals $\frac{160}{760}=21 \%$. The vaporizer must dilute this saturated vapor with enough fresh gas to reduce the concentration by a factor of 10 .

Modern vaporizers accomplish this by diverting the fresh gas into two streams, a bypass stream which does not contact anesthetic liquid, $Q_{\text {bypass }}$, and a vaporizing chamber stream, $Q_{\text {chamber }}$ which becomes saturated with sevoflurane vapor, $Q_{\text {sevo }}$.

If $Q_{\text {sevo }}$ is the amount of sevoflurane gas produced from vaporization, then

$$
\frac{Q_{\text {sevo }}}{Q_{\text {bypass }}+Q_{\text {chamber }}+Q_{\text {sevo }}}=2.1 \%
$$

The vaporizing chamber stream completely saturates with sevoflurane, i.e.

$$
\frac{Q_{\text {sevo }}}{Q_{\text {chamber }}+Q_{\text {sevo }}}=21 \%
$$

and so

$$
Q_{\text {chamber }}=3.8 Q_{\text {sevo }}
$$

which means

$$
Q_{\text {bypass }}=42.9 Q_{\text {sevo }}
$$

So the vaporizer must split the fresh gas flow using a ratio of

$$
\frac{Q_{\text {bypass }}}{Q_{\text {chamber }}}=11.3
$$

At $P_{a t m}=500$, the splitting ratio is unchanged but now

$$
\frac{Q_{\text {sevo }}}{Q_{\text {chamber }}+Q_{\text {sevo }}}=\frac{160}{500}=32 \%
$$

Working backward,
$Q_{\text {chamber }}=2.1 Q_{\text {sevo }}$ and since $Q_{\text {bypass }}=11.3 Q_{\text {chamber }}$, we find $Q_{\text {bypass }}=23.7 Q_{\text {sevo }}$,
The output concentration is

$$
\frac{Q_{\text {sevo }}}{Q_{\text {bypass }}+Q_{\text {chamber }}+Q_{\text {sevo }}}=3.7 \%
$$

How much more potent is this? Potency depends on partial pressure, not concentration. $3.7 \%$ of 500 is 18.7 mm . 1 MAC at sea level is equivalent to $(2.1 \%)(760 \mathrm{~mm})=16 \mathrm{~mm}$. Therefore at $P_{a t m}=500$, the potency increases by a factor of $\frac{18.7}{16}=1.2$


[^0]:    ${ }^{1}$ Adapted from Lovich et al, The Impact of Carrier Flow Rate and Infusion Set DeadVolume on the Dynamics of Intravenous Drug Delivery. Anesth Analg 2005;100:1048-55.

